Abstract

An optimal carrier for bone tissue engineering should be both a controll ed release system and a scaffold. In the former role, the carrier must prevent rapid f actor clearance and ideally meter out the growth factor in a predictable manner, allowing therapeutic doses to sti mulate target cells for the appropriate duration. In the latter role, the material should act as a permissive environment into which bone cells would be attracted to migrate and begin the process of depositing bone matrix. Therefore the direct incorporation of growth factor in porous scaffolds should be a desirable goal. The inclusion of a bioactive ceramic on the scaffold design will conf er to the systems a bone bonding behaviour that will guide bone formation. This work reports the developme nt of composite chitosan/HA (from algal origin) porous structures produced by means of freeze-drying processing routes that can be further loaded with a biologically active agent. The developed bioactive 3D structures (completely from marine origin) have potential applicat ion as tissue engineering scaffolds and drug delivery systems due to their morphological and bioactive properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.