Abstract

Porous activated carbon materials derived from biomass could be the suitable materials for high-rate performance electrochemical supercapacitors as it exhibits high surface area due to well-defined pore structure. Here, we report the novel porous activated carbon from Triphala seed stones by chemical activation with zinc chloride at different carbonization temperature (400-700 °C) under the nitrogen gas atmosphere. The activated carbon was characterized by Fourier transform-infrared (FTIR) spectroscopy, Raman scattering and scanning electron microscopy (SEM). Nitrogen adsorption-desorption measurements was used to study the surface properties (effective surface areas, pore volumes and pore size distributions). The electrochemical measurements were performed in an aqueous 1 M sulphuric acid (H2SO4) solution in a three-electrode cell set up. Triphala seed stones-derived porous carbon materials with well-defined micro- and mesopores exhibit high specific surface area ranges from 878.7 to 1233.3 m2 g-1 and total pore volume ranges from 0.439 to 0.626 cm3 g-1. The specific capacitance obtained by electrochemical measurement experiment was 208.7 F g-1 at 1 A g-1. These results indicate that the prepared nanoporous activated carbon material from Triphala seed stones would have significant possibility as supercapacitor electrode material for high-energy-storage supercapacitor applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.