Abstract

We demonstrate for first time the ultrafast properties of a newly formed porous Au nanostructure. The properties of the porous nanostructure are compared with those of a solid gold film using time-resolved optical spectroscopy. The experiments suggest that under the same excitation conditions the relaxation dynamics are slower in the former. Our observations are evaluated by simulations based on a phenomenological rate equation model. The impeded dynamics has been attributed to the porous nature of the structure in the networks, which results in reduced efficiency during the dissipation of the laser-deposited energy. Importantly, the porosity of the complex three-dimensional nanostructure is introduced as a geometrical control parameter of its ultrafast electron transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.