Abstract

This study proposed deep learning-based ultrasonic nondestructive testing for porosity evaluation of additively manufactured components. First, porosity mechanisms according to additive manufacturing (AM) processing conditions were studied using traditional scanning acoustic microscopy and optical microscopy. Second, correlations between ultrasonic properties and porosity content were analyzed. The correlation results showed that the increased porosity content resulted in a decreased ultrasonic velocity and increased ultrasonic attenuation coefficient. Third, various levels of porosities were evaluated using a deep learning model based on a fully connected deep neural network that was trained on raw ultrasonic signals measured in the AM samples. After training, the testing performance of the trained model was evaluated. Additionally, the generalization performance of the pre-trained model was assessed using newly fabricated AM samples that were not used for training. The results showed that the porosity content evaluated by the pre-trained model matched well with that measured via traditional scanning acoustic microscopy, thus demonstrating the feasibility of deep learning-based ultrasonic nondestructive testing for porosity evaluation of additively manufactured components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.