Abstract
Al2O3-C refractories were first fabricated in a coke bed at 1673 K (1400 °C) using tabular corundum, reactive alumina, carbon black, silicon, and microsilica as the starting materials and phenol resin as the binder. Then the alkali attack resistance of those materials was conducted in the powder mixture of carbon black and potassium carbonate (1:1 wt pct) in a graphite crucible at 1273 K (1000 °C) for 10 hours. The correlation between pore size, permeability of Al2O3-C refractories, and their alkali (K2CO3) attack was investigated by means of mercury intrusion porosimetry, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The results showed that the pore structure of Al2O3-C refractories was controlled by the addition of silicon, ultrafine reactive alumina, and microsilica to in-situ form SiC whiskers and mullite in the preparation process. The mean pore size of Al2O3-C refractories was strongly associated with permeability. With the decrease of the mean pore size, the permeability of the Al2O3-C refractories reduced constantly. The alkali attack test also verified that the Al2O3-C refractories with lower permeability had better alkali corrosion resistance, because the penetration of K vapor into the materials could be restricted effectively. The corrosion mechanism of Al2O3-C refractories supposes that (1) K2CO3 was reduced to K vapor and penetrated into the specimen through the open pores and (2) K vapor reacted with SiC, SiO2, and alumina to form KAlSi2O6 and KAlSiO4, which is in agreement with the thermodynamic prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.