Abstract

In this study, a Grand Canonical Monte Carlo simulation (GCMC) method is used to study the adsorption of different probe molecules on activated carbon, while the experimental tests are performed by using a Gravimetric Analyzer. In addition the simulation results together with the measured isotherm data are used for the determination of micropore size distribution. Nitrogen at 77 K and carbon dioxide at 273 and 300 K are proposed as molecular probes. The simulation results obtained for various pore sizes represent the structure of molecular probe packing in the individual pores at different pressures. The reconstructed adsorption isotherm obtained by using these results and a postulated pore size distribution (PSD) function is used to determine the PSD of activated carbon which provides the best match between the simulation isotherm and the experimental isotherm. The PSD obtained using the GCMC agrees very well with the Density Functional Theory (DFT) method. The PSD for carbon dioxide differs from that for nitrogen due to the molecular structure and size. The advantage of GCMC is that it can provide not only adsorption isotherm but also the snapshot that presents the mechanism inside the pore.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.