Abstract

Pluripotent stem cells (PSCs) have unlimited self-renewal and multifunctional development potential in vitro. Porcine PSCs are highly desirable due to the conserved characteristics between pigs and humans. Extended PSCs (EPSCs) are additionally capable of differentiating into embryonic (Em) and extraembryonic (E×Em) parts. Here, we employed the LCDM culture system (consisting of human LIF, CHIR99021, (S)-(+)-dimethindene maleate, and minocycline hydrochloride), which can establish EPSCs from humans and mice, to derive and maintain stable porcine PSCs (pLCDM) from in vivo blastocysts. Transcriptome analysis revealed the unique molecular characteristics of pLCDMs compared with early-stage embryos. Meanwhile, the parallels and differences in the transcriptome features among pLCDMs, human EPSCs, and mouse EPSCs were carefully analyzed and evaluated. Most noteworthy, the trophoblast lineage differentiation tendency of pLCDMs was clarified by inducing trophoblast-like cells and trophoblast stem cells (TSCs) in vitro. Further research found that 2 of the small molecules in LCDM culture system, (S)-(+)-dimethindene maleate (DiM) and minocycline hydrochloride (MiH), probably play a crucial role in promoting trophoblast lineage differentiation potential of pLCDMs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.