Abstract

Lopinavir/ritonavir (LPV/r) is recommended by the World Health Organization as first-line treatment for HIV-infected infants and young children. We performed a composite population pharmacokinetic (PK) analysis on LPV plasma concentration data from 6 pediatric and adult studies to determine maturation and formulation effects from infancy to adulthood. Intensive PK data were available for infants, children, adolescents, and adults (297 intensive profiles/1662 LPV concentrations). LPV PK data included 1 adult, 1 combined pediatric-adult, and 4 pediatric studies (age 6 weeks to 63years) with 3 formulations (gel-capsule, liquid, melt-extrusion tablets). LPV concentrations were modeled using nonlinear mixed effects modeling (NONMEM v. 7.3; GloboMax, Hanover, Maryland) with a one compartment semiphysiologic model. LPV clearance was described by hepatic plasma flow (QHP ) times hepatic extraction (EH ), with EH estimated from the PK data. Volume was scaled by linear weight (WT/70)1.0 . Bioavailability was assessed separately as a function of hepatic extraction and the fraction absorbed from the gastrointestinal tract. The absorption component of bioavailability increased with age and tablet formulation. Monte Carlo simulations of the final model using current World Health Organization weight-band dosing recommendations demonstrated that participants younger than 6 months of age had a lower area under the drug concentration-time curve (94.8 vs >107.4μghr/mL) and minimum observed concentration of drug in blood plasma (5.0vs> 7.1μg/mL) values compared to older children and adults. Although World Health Organization dosing recommendations include a larger dosage (mg/m2 ) in infants to account for higher apparent clearance, they still result in low LPV concentrations in many infants younger than 6 months of age receiving the liquid formulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.