Abstract

The metabolism, population dynamics and spatial distribution of nitrifying bacteria and heterotrophs in biofilms under the action of direct electric current were investigated by using the micro-slicing technique. The nitrification rate of nitrifying bacteria was severely inhibited by a current over 10 Am−2 at lower C/N ratios. Compared to heterotrophs, the nitrifying bacteria in the surface biofilms were severely inhibited, resulting in a significant decrease in bacterial density. An increase in current density narrowed the less current-sensitive inner biofilm region, and in addition the density of NO2-oxidizers decreased more significantly than that of NH4-oxidizers in the surface biofilms probably due to electrochemical reactions at the anode. However, the effect of current on both the population dynamics and the spatial distribution of the microbial species was less significant at larger C/N ratios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.