Abstract

Long-distance dispersal (LDD) is consequential to metapopulation ecology and evolution. In systems where dispersal is undertaken by small propagules, such as larvae in the ocean, documenting LDD is especially challenging. Genetic parentage analysis has gained traction as a method for measuring larval dispersal, but such studies are generally spatially limited, leaving LDD understudied in marine species. We addressed this knowledge gap by uncovering LDD with population assignment tests in the coral reef fish Elacatinus lori, a species whose short-distance dispersal has been well-characterized by parentage analysis. When adults (n = 931) collected throughout the species' range were categorized into three source populations, assignment accuracy exceeded 99%, demonstrating low rates of gene flow between populations in the adult generation. After establishing high assignment confidence, we assigned settlers (n = 3,828) to source populations. Within the settler cohort, <0.1% of individuals were identified as long-distance dispersers from other populations. These results demonstrate an exceptionally low level of connectivity between E. lori populations, despite the potential for ocean currents to facilitate LDD. More broadly, these findings illustrate the value of combining genetic parentage analysis and population assignment tests to uncover short- and long-distance dispersal, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.