Abstract

Xylem vulnerability to cavitation differs between tree species according to their drought resistance, more xerophilous species being more resistant to xylem cavitation. Variability in xylem vulnerability to cavitation is also found within species, especially between in situ populations. The origin of this variability has not been clearly identified. Here we analyzed the response of xylem hydraulic traits of Populus tremula x Populus alba trees to three different soil water regimes. Stem xylem vulnerability was scored as the xylem water potential causing 12, 50 and 88% loss of conductivity (P(12), P(50) and P(88)). Vulnerability to cavitation was found to acclimate to growing conditions under different levels of soil water content, with P(50) values of -1.82, -2.03 and -2.45 MPa in well-watered, moderately water-stressed and severely water-stressed poplars, respectively. The value of P(12), the xylem tension at which cavitation begins, was correlated with the lowest value of midday leaf water potential (psi m) experienced by each plant, the difference between the two parameters being approximately 0.5 MPa, consistent with the absence of any difference in embolism level between the different water treatments. These results support the hypothesis that vulnerability to cavitation is a critical trait for resistance to drought. The decrease in vulnerability to cavitation under growing conditions of soil drought was correlated with decreased vessel diameter, increased vessel wall thickness and a stronger bordered pit field (t/b)(2). The links between these parameters are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.