Abstract

Improving energy storage density and efficiency is the ultimate goal of dielectric materials used in ceramic capacitors. Among different dielectric materials, dielectrics in thin film state own superior energy performances due to less defects compared with ceramic. Herein, we report an optimized lead-free Zr-modified BiMg0.5Zr0.04Tix-0.04O3 composition with enhanced energy storage behavior via microstructural engineering. Rapid annealing can result in poorly crystallization in the film matrix confirmed by grazing incident X-ray diffraction GIXRD. The excess Ti source can effectively increase polarization and dielectric breakdown till to 97.0 μC/cm2 and 3403 kV/cm at x = 0.775, respectively. The optimized energy properties can be achieved at x = 0.775 with a high recoverable energy storage density Wreco of 87.8 J/cm3 and an efficiency η of 50%, indicative of excellent stability of storing electricity for the applications of pulse power electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.