Abstract

IntroductionPomegranate has been revered throughout history for its medicinal properties. p38-MAPK is a major signal-transducing pathway in osteoarthritis (OA) and its activation by interleukin-1β (IL-1β) plays a critical role in the expression and production of several mediators of cartilage catabolism in OA. In this study we determined the effect of a standardized pomegranate extract (PE) on the IL-1β-induced activation of MKK3/6, p38-MAPK isoforms and the activation of transcription factor RUNX-2 in primary human OA chondrocytes.MethodsHuman chondrocytes were derived from OA cartilage by enzymatic digestion, treated with PE and then stimulated with IL-1β. Gene expression of p38-MAPK isoforms was measured by RT-PCR. Western immunoblotting was used to analyze the activation of MAPKs. Immunoprecipitation was used to determine the activation of p38-MAPK isoforms. DNA binding activity of RUNX-2 was determined using a highly sensitive and specific ELISA. Pharmacological studies to elucidate the involved pathways were executed using transfection with siRNAs.ResultsHuman OA chondrocytes expressed p38-MAPK isoforms p38α, -γ and -δ, but not p38β. IL-1β enhances the phosphorylation of the p38α-MAPK and p38γ-MAPK isoforms but not of p38δ-MAPK isoform in human OA chondrocytes. Activation of p38-MAPK in human OA chondrocytes was preferentially mediated via activation of MKK3. In addition, we also demonstrate that polyphenol rich PE inhibited the IL-1β-induced activation of MKK3, p38α-MAPK isoform and DNA binding activity of the transcription factor RUNX-2.ConclusionsOur results provide an important insight into the molecular basis of the reported cartilage protective and arthritis inhibitory effects of pomegranate extract. These novel pharmacological actions of PE on IL-1β stimulated human OA chondrocytes impart a new suggestion that PE or PE-derived compounds may be developed as MKK and p38-MAPK inhibitors for the treatment of OA and other degenerative/inflammatory diseases.

Highlights

  • Pomegranate has been revered throughout history for its medicinal properties. p38-mitogen activated protein kinase (MAPK) is a major signal-transducing pathway in osteoarthritis (OA) and its activation by interleukin-1b (IL-1b) plays a critical role in the expression and production of several mediators of cartilage catabolism in OA

  • These results show that the antibodies used in this study were highly specific for MKK3 and MKK6 protein as no cross reactivity with non-target protein was observed

  • Our results show that both MKK3 and MKK6 were constitutively phosphorylated in the primary human OA chondrocytes but the intensity of MKK3 phosphorylation was significantly enhanced (P < 0.05) after stimulation with IL-1b (Figure 1b &1c)

Read more

Summary

Introduction

Pomegranate has been revered throughout history for its medicinal properties. p38-MAPK is a major signal-transducing pathway in osteoarthritis (OA) and its activation by interleukin-1b (IL-1b) plays a critical role in the expression and production of several mediators of cartilage catabolism in OA. It is well documented that activation of the runt-related transcription factor RUNX-2 is mediated by activated p38-MAPK as inhibition of p38-MAPK abrogates its activity and the expression of cartilage degrading enzymes in chondrocytes [16]. These and other studies [17] clearly show that inhibition of specific MAPKs or transcription factor may be an effective approach for the inhibition of joint destruction in arthritis

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.