Abstract

Oxidative stress is a common feature of genetic and idiopathic neurological diseases that thus far have been intractable to drug therapy. Polyunsaturated fatty acids (PUFAs) form cellular, mitochondrial, retinal, and other membranes highly important in neuronal function. However, PUFAs are susceptible to the noxious lipid peroxidation (LPO) chain reaction, which is a common feature of various neurological and age-related pathologies, making this pathway an attractive target for therapeutic intervention. Regioselective deuteration that reinforces oxidation-prone, bis-allylic sites of PUFAs is a novel, nonantioxidant treatment modality that dramatically reduces LPO, potentially mitigating numerous diseases through preservation of membrane properties and amelioration of oxidative stress. Animal disease models and several ongoing human clinical trials highlight the potential of the deuterated-PUFA (D-PUFA) drug candidates currently in development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.