Abstract
The theory and practice of polytypic programming is intimately connected with the initial algebra semantics of datatypes. This is both a blessing and a curse. It is a blessing because the underlying theory is beautiful and well developed. It is a curse because the initial algebra semantics is restricted to so-called regular datatypes. Recent work by R. Bird and L. Meertens [3] on the semantics of non-regular or nested datatypes suggests that an extension to general datatypes is not entirely straightforward. Here we propose an alternative that extends polytypism to arbitrary datatypes, including nested datatypes and mutually recursive datatypes. The central idea is to use rational trees over a suitable set of functor symbols as type arguments for polytypic functions. Besides covering a wider range of types the approach is also simpler and technically less involving than previous ones. We present several examples of polytypic functions, among others polytypic reduction and polytypic equality. The presentation assumes some background in functional and in polytypic programming. A basic knowledge of monads is required for some of the examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Discrete Mathematics & Theoretical Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.