Abstract

Conducting polythiophene/SiO 2 (PT/SiO 2) nanocomposites were prepared in the presence of three different surfactants (anionic, cationic and non-ionic) via chemical oxidative polymerization in an anhydrous medium to create an enzyme-immobilized polymeric amperometric biosensor. An anionic surfactant, sodium dodecylbenzenesulfonate (DBSNa), a cationic surfactant, tetradecyltrimethylammonium bromide (TTAB), and a non-ionic surfactant, poly(ethylene oxide) (20) sorbitan monolaurate (Tween 20), were used as additives. The properties of the nanocomposites were investigated, as a function of surfactant type and the amount of PT contained, by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The SEM results reveal that all PT/SiO 2 samples form nanometer-dimensioned globular structures. The highest conductivity obtained was 2.7 × 10 −2 S cm −1 for a PT/SiO 2-Tween 20 nanocomposite. Thermogravimetric analysis (TGA) shows that the residue decreases with increasing amount of PT. Glucose oxidase (GOX) was immobilized by crosslinking to the conducting PT/SiO 2 composites and was used for amperometric detection of glucose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.