Abstract

This study enhanced the adsorptive capacity of polystyrene (PS) by infusing reduced graphene oxide (rGO) nanoparticles obtained from the synthesis of graphene oxide to produce PS-rGO composites via electrospinning method. Physicochemical characterization of as-synthesized rGO and PS-rGO were carried out through scanning electron microscopy, N2 physisorption among others. Oil sorption performance of synthesized rGO in crude oil, vegetable oil, fresh engine oil and used engine oil are 130.96 g/g, 121.77 g/g, 105.01 g/g and 100.56 g/g. Oil sorption capacities of electrospun pure PS in crude oil, vegetable oil, fresh engine oil and used engine oil were 46.32 g/g, 38.54 g/g, 35.14 g/g and 32.57 g/g and those of PS-rGO infused with 4 wt% of rGO were found to be 105.52 g/g, 98.86 g/g, 86.25 g/g and 83.47 g/g for crude oil, vegetable oil, fresh engine oil and used engine oil samples respectively. Pseudo second order (PSO) kinetic model fits the sorption data of the four oil samples on the four composite sorbents produced. Intra-particle diffusion (IPD) model evidently showed that sorption of the four oil samples on the four composite sorbents, occurred in three (3) phases. Composites demonstrate high oil adsorption capacity, and are reusable upto three sorption–desorption cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.