Abstract

Micro-/nanoplastics (MNPLs), novel environmental pollutants, widely exist in the environment and life and bring health risks. Previous studies have shown that NMPLs can penetrate bone marrow, but whether they cause hematopoietic damage remains uncertain. In this study, C57BL/6J mice were treated with polystyrene MNPLs (PS-MNPLs, 10μm, 5μm and 80nm) at 60μg doses for 42days by intragastric administration. We evaluated the hematopoietic toxicity induced by MNPLs and potential mechanisms via combining 16S rRNA, metabolomics, and cytokine chips. The results demonstrated that PS-MNPLs induced hematopoietic toxicity, which was manifested by the disorder of bone marrow cell arrangement, the reduction in colony-forming, self-renewal and differentiation capacity, and the increased proportion of lymphocytes. PS-MNPLs also disrupted the homeostasis of the gut microbiota, metabolism, and inflammation, all of which were correlated with hematotoxicity, suggesting that abnormal gut microbiota-metabolite-cytokine axes might be the crucial pathways in MNPLs-induced hematopoietic injury. In conclusion, our study systematically demonstrated that multi-scale PS-MNPLs induced hematopoietic toxicity via the crosstalk of gut microbiota, metabolites, and cytokines and provided valuable insights into MNPLs toxicity, which was conducive to health risk assessment and informed policy decisions regarding PS-MNPLs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.