Abstract

In this paper, we investigate various aspects of the polysilicon gate influence on the random dopant induced threshold voltage fluctuations in sub-100 nm MOSFETs with ultrathin gate oxides. The study is done by using an efficient statistical three-dimensional (3D) atomistic simulation technique. MOSFETs with uniform channel doping and with low doped epitaxial channels have been investigated. The simulations reveal that even in devices with a single crystal gate the gate depletion and the random dopants in it are responsible for a substantial fraction of the threshold voltage fluctuations when the gate oxide is scaled to thickness in the range of 1-2 nm. Simulation experiments have been used in order to separate the enhancement in the threshold voltage fluctuations due to an effective increase in the oxide thickness associated with the gate depletion from the direct influence of the random dopants in the gate depletion layer. The results of the experiments show that the both factors contribute to the enhancement of the threshold voltage fluctuations, but the effective increase in the oxide thickness has a dominant effect in the investigated range of devices. Simulations illustrating the effect of the polysilicon grain boundaries on the threshold voltage variation are also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.