Abstract

Four polysaccharides, named FSIP, FSIP-I, FSIP-II and FSIP-III, were isolated from Flos Sophorae Immaturus. Structure characterization revealed that FSIP-I and FSIP-II were types of AG-II-like polysaccharides while FSIP-III featured a RG-II-like structure with high content of GalpA. In vitro experiments showed that FSIPs upregulated HK and PK activities in glycolysis while downregulated G-6-Pase activities in gluconeogenesis. This increased glucose utilization while decreased the glucose synthesis in IR-HepG2 cells, potentially reducing elevated blood sugar levels induced by excess insulin. In terms of antioxidant system, FSIPs decreased the levels of ROS and MDA, and increased the activities of SOD and CAT, enhancing antioxidant capacity to counteract damage caused by insulin resistance in IR-HepG2 cells. To further explore the mechanism, related genes expressions were analyzed. The results found that FSIPs ameliorated insulin resistance via regulating AMPK and IRS-1/PI3K/AKT signal pathways. In the case of AMPK, glucose can be channeled into oxidative (catabolic) pathway, whereas, in the case of IRS-1/PI3K/AKT, glucose can be stored as glycogen (anabolic). This co-modulation could ameliorate insulin resistance by upregulating the glycolysis and repressing the gluconeogenesis in catabolism, and upregulating the glycogen synthesis in anabolism. Additionally, FSIP-III exhibited better anti-insulin resistance activity, attributed to its high content of GalpA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.