Abstract

Carbon monoxide (CO) has emerged as a potential antitumor agent by inducing the dysfunction of mitochondria and the apoptosis of cancer cells. However, it remains challenging to deliver appropriate amount of CO into tumor to ensure efficient tumor growth suppression with minimum side effects. Herein we developed a CO prodrug-loaded nanomedicine based on the self-assembly of camptothecin (CPT) polyprodrug amphiphiles. The polyprodrug nanoparticles readily dissociate upon exposure to endogenous H2O2 in the tumor, resulting in rapid release of CPT and generation of high-energy intermediate dioxetanedione. The latter can transfer the energy to neighboring CO prodrugs to activate CO production by chemiexcitation, while CPT promotes the generation of H2O2 in tumors, which in turn facilitates cascade CPT and CO release. As a result, the polyprodrug nanoparticles display remarkable tumor suppression in both subcutaneous and orthotopic breast tumor-bearing mice owing to the self-augmented CPT release and CO generation. In addition, no obvious systemic toxicity was observed in mice treated with the metal-free CO prodrug-loaded nanomedicine, suggesting the good biocompatibility of the polyprodrug nanoparticles. Our work provides new insights into the design and construction of polyprodrug nanomedicines for synergistic chemo/gas therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.