Abstract

The theory of polynomials over finite fields is important for investigating the algebraic structure of finite fields as well as for many applications. Above all, irreducible polynomials—the prime elements of the polynomial ring over a finite field—are indispensable for constructing finite fields and computing with the elements of a finite field. Section 1 introduces the notion of the order of a polynomial. An important fact is the connection between minimal polynomials of primitive elements (so-called primitive polynomials) and polynomials of the highest possible order for a given degree. Results about irreducible polynomials going beyond those discussed in the previous chapters are presented in Section 2. The next section is devoted to constructive aspects of irreducibility and deals also with the problem of calculating the minimal polynomial of an element in an extension field. Certain special types of polynomials are discussed in the last two sections. Linearized polynomials are singled out by the property that all the exponents occurring in them are powers of the characteristic. The remarkable theory of these polynomials enables us, in particular, to give an alternative proof of the normal basis theorem. Binomials and trinomials — that is, two-term and three-term polynomials—form another class of polynomials for which special results of considerable interest can be established. We remark that another useful collection of polynomials— namely, that of cyclotomic polynomials—was already considered in Chapter 2, Section 4, and that some additional information on cyclotomic polynomials is contained in Section 2 of the present chapter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.