Abstract

As a continuation of the efficient and accurate polynomial interpolation time-marching technique in one-dimensional and two-dimensional cases, this paper proposes a method to extend it to three-dimensional problems. By stacking all two-dimensional (x, y) slice matrices along Z direction, three-dimensional derivative matrices are constructed so that the polynomial interpolation time-marching can be performed in the same way as one-dimensional and two-dimensional cases. Homogeneous Dirichlet and Neumann boundary conditions are also incorporated into the matrix operators in a similar way as in one- and two-dimensional problems. A simple numerical example of scalar wave propagation in a closed-cube has validated this extended method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.