Abstract

We give a new, systematic proof for a recent result of Larry Guth and thus also extend the result to a setting with several families of varieties: For any integer \(D\ge 1\) and any collection of sets \(\Gamma _1,\ldots ,\Gamma _j\) of low-degree k-dimensional varieties in \(\mathbb {R}^n\), there exists a non-zero polynomial \(p\in \mathbb {R}[X_1,\ldots ,X_n]\) of degree at most D, so that each connected component of \(\mathbb {R}^n{\setminus }Z(p)\) intersects \(O(jD^{k-n}|\Gamma _i|)\) varieties of \(\Gamma _i\), simultaneously for every \(1\le i\le j\). For \(j=1\), we recover the original result by Guth. Our proof, via an index calculation in equivariant cohomology, shows how the degrees of the polynomials used for partitioning are dictated by the topology, namely, by the Euler class being given in terms of a top Dickson polynomial.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.