Abstract

We propose an algorithm to solve polynomial eigenvalue problems via linearization combining several ingredients: a specific choice of linearization, which is constructed using input from tropical algebra and the notion of well-separated tropical roots, an appropriate scaling applied to the linearization and a modified stopping criterion for the QZ iterations that takes advantage of the properties of our scaled linearization. Numerical experiments suggest that our polynomial eigensolver computes all the finite and well-conditioned eigenvalues to high relative accuracy even when they are very different in magnitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.