Abstract

An approach to ultra-high load solid (gel) phase peptide synthesis is described in which a bead-form phenolic core polymer, crosslinked poly[N-{2-(4-hydroxyphenyl)ethyl}-acrylamide], is used as a support matrix at near theoretical maximum loading. Consecutive repeating units of the core polymer carry peptide chains undergling stepwise elongation. Synthesis proceeds through a series of solvated networks, which consist mainly of protected peptide. The solvated networks are deemed to be quasi-homogeneous, insofar as each has a regular covalent framework and each is believed to be uniformly distributed throughout the gel beads. Illustrative synthesis of two fully-protected acylpeptide hydrazide segments, corresponding to dynorphin(6–12) and to β h-endorphin (18–26), are described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.