Abstract

Nanopowders of amorphous SiO2, with typical particle sizes of 30–80 nm, were treated under the non-equilibrium plasma conditions, created by a capacitively coupled (CC) RF discharge formed in pure methane or ethane. The plasma gas flow rate varied between 0.02 and 0.06 slpm, with reactor pressures between 1000 and 5000 Pa, and applied RF power inputs between 700 and 1500 W. The plasma properties were monitored through measurements of the rotational temperature, as derived from the C2 5160 A Swan band and N2 second positive 3577 A band, and the atomic hydrogen excitation temperature, from the Hβ Hγ and Hδ lines during the powder treatment process. The compositions of the gases that passed through the plasma were analyzed by mass spectrometry. In spite of the evidence for the presence of CnH2n+2 and CnH2n (n=1–3) species and acetylene in the discharge, the homogeneous formation of soot was not observed. At the same time, the introduced nanoparticles were observed to act as centers for the inception and growth of C:H thin coatings in the form of a polymer-like hydrocarbon layers, of thickness between <5 and 30 nm. The results of TEM, IR spectroscopy, thermo-gravimetric and precision calorimetric analysis performed on the treated powders provide evidence to the formation of an amorphous, high density C:H matrix on the particles' surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.