Abstract

To improve the bioavailability and anticancer potential of suberoylanilide hydroxamic acid (SAHA) by developing a drug-loaded polymeric nanomicellar system. SAHA-loaded Poly(ethylene glycol)-block-poly(caprolactone) (PEG-PCL) micelles were developed, and physico-chemically characterized. In vitro cellular uptake, viability and apoptosis-inducing ability of the SAHA-PEG-PCL micelles were investigated. In vivo anticancer activity was evaluated in C57BL/6 mice-bearing tumor. The SAHA-PEG-PCL micelles had optimum size (∼130 nm) with an entrapment efficiency of approximately 67%. The SAHA-PEG-PCL induced stronger cell cycle arrest in G2/M phase leading to higher rate of apoptosis compared to free SAHA. SAHA-PEG-PCL demonstrated significant tumor suppression compared to free SAHA in vivo. The physicochemical properties and the antitumor efficacy of SAHA were improved by encapsulating in polymeric micelles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.