Abstract
Anisotropic polymer-inorganic composite latex particles were synthesized by using a RAFT-based encapsulation approach on cationic gibbsite platelets. By using the RAFT agent dibenzyl trithiocarbonate, a series of amphipatic living random RAFT copolymers with different combinations of acrylic acid and butyl acrylate units were synthesized. These RAFT copolymers were used as living stabilizers for the gibbsite platelets and chain extended to form a polymeric shell by starved feed emulsion polymerization. Cryo-TEM characterization of the resulting composite latexes demonstrates the formation of anisotropic composite latex particles with mostly one platelet per particle. Monomer feed composition, chain length, and hydrophilic-lipophilic balance of the RAFT copolymer were found to be important factors for the overall efficiency of the encapsulation. Good control over platelet orientation and high encapsulation efficiency were achieved via this route.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.