Abstract

Dynamically unstable polymers capture and move cellular cargos in bacteria and eukaryotes, but regulation of their assembly remains poorly understood. Here we describe polymerization of Alp7A, a bacterial actin-like protein (ALP) that distributes copies of plasmid pLS20 among daughter cells in Bacillus subtilis. Purified ATP-Alp7A forms dynamically unstable polymers with a high critical concentration for net assembly (ccN = 10.3 µM), but a much lower critical concentration for filament elongation (ccE = 0.6 µM). Rapid nucleation and stabilization of Alp7A polymers by the accessory factor, Alp7R, decrease ccN into the physiological range. Stable populations of Alp7A filaments appear under two conditions: (i) when Alp7R slows catastrophe rates or (ii) when Alp7A concentrations are high enough to promote filament bundling. These results reveal how dynamic instability maintains high steady-state concentrations of monomeric Alp7A, and how accessory factors regulate Alp7A assembly by modulating ccN independently of ccE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.