Abstract

We extend the mean-field Gaussian chain theory, originally developed for non-dilute solutions of athermal polymer chains in a slit, to solutions in a channel with a square cross section. The formulation allows one to calculate the monomer density profile, the chemical potential of the confined polymer chain, and therefore the partition coefficient. For the mean-field potential, we used the first-order approximation that neglects local monomer density fluctuations and the second-order approximation that takes into account the fluctuations. The results of the density profile and the partition coefficient were compared with those obtained in the lattice Monte Carlo simulations. The theoretical results obtained with the first-order approximation agreed well with the simulation results for chains of 100 beads below the average monomer density of ca. 0.2. At higher concentrations, the second-order results gave a better agreement. This cross over indicates a change in the interactions between polymer chains from those in one-dimension to those in three-dimensions as the correlation length in the confined solution becomes sufficiently shorter than the channel width.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.