Abstract

The osteoblast cell growth and cancer cell inhibition of titanium (Ti) metal implant coated with polyvinyl alcohol (PVA) reinforced hydroxyapatite (HAP) composite were investigated. The fibrous composite of PVA/HAP/folic acid (FA)/Methotrexate (MTX) was coated on the surface of a titanium plate and observed with microscopy. During the PVA/HAP/FA/MTX composite's preparation, the functional changes and crystalline phases were observed through Fourier-transform infrared spectroscopy and X-ray diffraction analysis, respectively. The fiber composite had an average diameter of 19 nm and a greater mechanical strength (9660 Pa) than that of pure HAP (4965 Pa), critical to the fibrous scaffold under load-bearing applications. Biocompatibility, cell growth, and proliferation capability of the PVA/HAP/FA/MTX composite were studied in human bone marrow-derived stem cells (hBMSCs). The fiber composite was found to have excellent biocompatibility with significant cell growth, while the MTX-loaded PVA/HAP/FA composite showed cytotoxicity against A459 cells. The prepared fibrous composites will serve as a superior biomaterial for osteosarcoma-diseased bone repair after evidencing of in-vivo and clinical trials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.