Abstract

β-Blockers (BBs) are mainstay therapy for heart failure with reduced ejection fraction. However, individual patient responses to BB vary, which may be partially due to genetic variation. The goal of this study was to derive and validate the first polygenic response predictor (PRP) for BB survival benefit in heart failure with reduced ejection fraction patients. Derivation and validation analyses were performed in n=1436 total HF patients of European descent and with ejection fraction <50%. The PRP was derived in a random subset of the Henry Ford Heart Failure Pharmacogenomic Registry (n=248) and then validated in a meta-analysis of the remaining patients from Henry Ford Heart Failure Pharmacogenomic Registry (n=247), the TIME-CHF (Trial of Intensified Versus Standard Medical Therapy in Elderly Patients With Congestive Heart Failure; n=431), and HF-ACTION trial (Heart Failure: a Controlled Trial Investigating Outcomes of Exercise Training; n=510). The PRP was constructed from a genome-wide analysis of BB×genotype interaction predicting time to all-cause mortality, adjusted for Meta-Analysis Global Group in Chronic Heart Failure score, genotype, level of BB exposure, and BB propensity score. Five-fold cross-validation summaries out to 1000 single-nucleotide polymorphisms identified optimal prediction with a 44 single-nucleotide polymorphism score and cutoff at the 30th percentile. In validation testing (n=1188), greater BB exposure was associated with reduced all-cause mortality in patients with low PRP score (n=251; hazard ratio, 0.19 [95% CI, 0.04-0.51]; P=0.0075) but not high PRP score (n=937; hazard ratio, 0.84 [95% CI, 0.53-1.3]; P=0.448)-a difference that was statistically significant (P interaction, 0.0235). Results were consistent regardless of atrial fibrillation, ejection fraction (≤40% versus 41%-50%), or when examining cardiovascular death. Among patients of European ancestry with heart failure with reduced ejection fraction, a PRP distinguished patients who derived substantial survival benefit from BB exposure from a larger group that did not. Additional work is needed to prospectively test clinical utility and to develop PRPs for other population groups and other medications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.