Abstract

Cationic polymer/DNA complexes are widely used for gene delivery, although the influence of the cationic polymer on the biophysical properties of the resulting complex is poorly understood. Here, several series of cationic polymers have been used to evaluate the influence of structural parameters on properties of DNA complexes. Parameters studied included the length of side chain, charge type (primary versus tertiary and quaternary), polymer molecular weight, and charge spacing along the polymer backbone. Cationic polymers with short side chains (such as polyvinylamine) formed small complexes, resistant to destabilization by polyanions, with low surface charge, limited transfection activity, and efficient intranuclear transcription. Conversely, cationic polymers with long side chains (e.g., poly[methacryloyl-Gly-Gly-NH-(CH(2))(6)-NH(2))] showed inefficient complex formation, high positive surface charge, and better transfection activity. The effects of molecular weight varied between polymers, for example, low molecular weight poly(L-lysine) produced relatively small complexes, whereas low molecular weight poly[2-(trimethylammonio)ethyl methacrylate chloride] produced large aggregates. Polymers containing quaternary ammonium groups showed efficient complex formation but poor transfection. Finally, spreading charges widely on the polymer structure inhibited their ability to condense DNA. In summary, to achieve small, stable complexes, the use of cationic polymers with short side chains bearing primary amino groups is suggested.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.