Abstract

A novel biomimetic strategy was employed for presenting antibodies on gold nanorods (NRs) to target growth factor receptors on cancer cells for use in photothermal therapy. Polydopamine (PD) was polymerized onto gold NRs, and EGF receptor antibodies (anti-EGFR) were immobilized onto the layer. Cell-binding affinity and light-activated cell death of cancer cells incubated with anti-EGFR-PD-NRs were quantified by optical imaging. PD was deposited onto gold NRs, and antibodies were bound to PD-coated NRs. Anti-EGFR-PD-NRs were stable in media, and were specifically bound to EGFR-overexpressing cells. Illumination of cells targeted with anti-EGFR-PD-NRs enhanced cell death compared with nonirradiated controls and cells treated with antibody-free NRs. PD facilitates the surface functionalization of gold NRs with biomolecules, allowing cell targeting and photothermal killing of cancer cells. PD can potentially coat a large variety of nanoparticles with targeting ligands as a strategy for biofunctionalization of diagnostic and therapeutic nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.