Abstract

The preparation of aggregation-induced emission-type copper nanoclusters (CuNCs) capped with polydopamine (PDA) is described. PDA was formed via in situ polymerization of dopamine in the presence of alkaline polyethylenimine. The PDA-capped CuNCs (PDA-CuNCs) exhibit orange fluorescence with maximal emission at 580nm upon excitation at 340nm, a storage stability of at least 2weeks, and a quantum yield (QY) of 2.54% in aqueous solution. The QY is 28-fold higher than that of sole CuNCs. The fluorescence of the PDA-CuNCs is quenched by Fe3+ ion while it is recovered by PO43- due to its stronger affinity for Fe3+. On this basis, a fluorometric phosphate assay was developed that has a 1.5 nM detection limit and a linear range over 0.003-70μM. The method was satisfactorily applied to the determination of phosphate in local tap water and human sera, and the results agreed well with those obtained by a colorimetric method. In the presence of acid phosphatase (ACP), PO43- is produced by the catalytic hydrolysis of adenosine triphosphate (ACP substrate). Thus, a fluorogenic assay for screening ACP activity was established. Response is linear over the activity range 0.0012-25UL-1, with a detection limit of 0.001UL-1 (at S/N = 3). Graphic abstract We proposed an effective polydopamine-templating strategy for the in situ synthesis of highly emissive and stable CuNCs and demonstrated its use as an ion-driven fluorescence switch for the determination of phosphate and acid phosphatase activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.