Abstract

Functionally graded materials (FGMs), with varying spatial, chemical and mechanical gradients (continuous or stepwise), have the potential to mimic heterogenous properties found across biological tissues. They can prevent stress concentrations and retain healthy cellular functions. Here, we show for the first time the fabrication of polydimethylsiloxane and poly(ether) ether ketone (PDMS-PEEK) composites. These were successfully manufactured as a bulk material and functionally graded (stepwise) without the use of hazardous solvents or the need of additives. Chemical, irreversible adhesion between layers (for the FGMs) was achieved without the formation of hard, boundary interfaces. The mechanical properties of PDMS-PEEK FGMs are proven to be further tailorable across the entirety of the build volume, mimicking the transition from soft to harder tissues. The introduction of 20 wt% PEEK particles into the PDMS matrix resulted in significant rises in the elastic modulus under tensile and compressive loading. Biological and thermal screenings suggested that these composites cause no adverse effects to human fibroblast cell lines and can retain physical state and mass at body temperature, which could make the composites suitable for a range of biomedical applications such as maxillofacial prosthetics, artificial blood vessels and articular cartilage replacement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.