Abstract

The temporal variations and major sources of polycyclic aromatic hydrocarbons (PAH) intrinsic to PM10 were investigated over a tropical urban atmosphere on the Indo-Gangetic Plain (IGP) and for the first time over a high altitude urban atmosphere at eastern Himalaya in India. Samples were collected over Kolkata, a megacity and Darjeeling, a high altitude (2200m asl) hill station in eastern India during the dry season (October 2015–May 2016). Fourteen PAHs were detected and quantified over Kolkata and Darjeeling during three consecutive seasons, viz., post-monsoon, winter and pre-monsoon. The total-PAHs concentrations were in the order of winter (78.08–146.71ngm−3)>post-monsoon (83.42–113.52ngm−3)>pre-monsoon (37.65–109.27ngm−3) at Kolkata, whereas post-monsoon (22.72–36.60ngm−3)>winter (8.52–28.43ngm−3)>pre-monsoon (5.45–13.34ngm−3) at Darjeeling. The observed seasonality of PAHs at Kolkata vis-a-vis Darjeeling has been explored in the light of anthropogenic activities, boundary layer dynamics and meteorological parameters such as temperature, relative humidity, wind speed and solar radiation. Negative correlation was observed between total-PAHs and temperature, wind speed and solar radiation over Kolkata and Darjeeling. The positive matrix factorization (PMF) model calculations suggested that coal (26%), petrol (24%) and diesel (17%) combustion, commercial and household kitchens (18%) and municipal solid waste incineration (15%) are the possible contributors to the PM10 associated PAHs over Kolkata whereas diesel (37%), commercial and household kitchens (23%), coal (21%) and petrol (20%) are the possible PM10 associated PAH sources over Darjeeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.