Abstract

Lotus-seedpod structured Li2ZnTi3O8/C (P-LZTO) microspheres obtained by the molten salt method are reported for the first time. The received phase-pure Li2ZnTi3O8 nanoparticles are inserted into the carbon matrix homogeneously to form a Lotus-seedpod structure, as confirmed by the morphological and structural measurements. As the anode for lithium-ion batteries, the P-LZTO material demonstrates excellent electrochemical performance with a high rate capacity of 193.2mAh g-1 at 5Ag-1 and long-term cyclic stability up to 300 cycles at 1Ag-1. After even 300 cyclings, the P-LZTO particles can maintain their morphological and structural integrity. The superior electrochemical performances have arisen from the unique structure where the polycrystalline structure is beneficial for shorting the lithium-ion diffusion path, while the well-encapsulated carbon matrix can not only enhance the electronic conductivity of the composite but also alleviate the stress anisotropy during lithiation/delithiation process, leading to well-preserved particles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.