Abstract

Sediment, pore water and water samples from the Hyeongsan River, Korea were analyzed for several classes of halogenated aromatic hydrocarbons (HAHs) and their dioxin-like activities were evaluated using the in vitro H4IIE-luc bioassay. Polychlorinated dibenzo- p-dioxins (PCDDs), dibenzofurans (PCDFs), and biphenyls (PCBs) were detected in sediments from all six sampling locations with mean concentrations of 2.8 × 10 2 pg/g, 190 pg/g, and 61.4 ng/g, dw, respectively. Polycyclic aromatic hydrocarbons (PAHs) were predominated by 4–6 ring compounds with concentrations in the range of 5.30–7680 ng/g, dw. Chemical profiles of target analytes in sediment and water samples revealed that there was a gradient of concentrations along the river from upstream to downstream, which suggested that the primary source was a wastewater reservoir adjacent to a sewage treatment plant (STP). TEQs derived by summing the product of concentrations of individual congeners by their respective relative potencies (REPs or TEFs) ranged from 4.3 × 10 −1 to 1.1 × 10 3 pg/g, dw. Raw Soxhlet extracts from all six sampling locations induced significant dioxin-like responses in the H4IIE-luc bioassay. TCDD-EQs derived from H4IIE bioassay ranged from 7 × 10 −3 to 1.5 × 10 3 pg/g, dw, which were significantly correlated with TEQs ( r 2 = 0.994, p < 0.05). Among the three Florisil fractions tested, PCDD/Fs in fraction (F2) induced the greatest magnitude of response (range: 24–83%-TCDD-max.) in the H4IIE-luc assay. Comparison of the TEQ and TCDD-EQ suggested little non-additive interaction between fractions and AhR-active and inactive compounds. Concentrations of individual congeners as well as TEQs and TCDD-EQs suggest inputs from the industrial center waste stream in the Hyeongsan River.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.