Abstract

Three kinds of nanostructured polyanilines (PANIs) were prepared through interfacial polymerization by using ammonium persulfate (APS) as a single oxidant, and APS/FeCl3, APS/K2Cr2O7 as composite oxidants, respectively. It is observed that faster formation process and higher yield of nanostructured PANIs could be achieved in the presence of FeCl3 and K2Cr2O7. The as-prepared PANIs were characterized by field emission scanning electron microscopy, ultraviolet–visible absorption spectroscopy, Fourier transform infrared and Raman spectroscopy, X-ray diffraction analysis and electrochemical measurements including cyclic voltammetry and galvanostatic charge/discharge measurement. The influence of composite oxidants on the morphology, microstructure, and electrical and electrochemical properties of PANIs was discussed. Interestingly, when APS/K2Cr2O7 was used as the composite oxidants, PANI exhibited petal-like structure with high yield of 57.35% instead of general nanofibrous morphology formed in interfacial polymerization. Compared with those nanofibrous PANIs obtained by using APS as a single oxidant or APS/FeCl3 as composite oxidants, petal-like PANIs exhibited the largest specific capacitance (692.4F/g at scan rate of 5mV/s) and highest cycle stability among them. It provides a new insight into the control of PANI nanostructures with high yield and energy storage ability by simply selecting suitable composite oxidants in interfacial polymerization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.