Abstract
Although it is generally acknowledged that transition metals at high oxidation states represent superior oxygen evolution reaction (OER) activity, the preparation and stability of such a high-valence state are still a challenge, which requires relatively harsh reaction conditions and is unstable under ambient conditions. Herein, we report the formation of trivalent nickel (Ni3+) in laser-fabricated nickel oxides induced by polyaniline (PANI) under electrochemical activation via a significant charge transfer between Ni and N, as confirmed by X-ray photoelectron spectroscopy and density functional theory calculations. Thereafter, the presence of Ni3+ and the improved conductivity by PANI effectively increase the electrochemical OER activity of the samples together with excellent long-term stability. This work provides new insights for the rational manufacture of high-valence metal for electrochemical reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.