Abstract
While dealing with the constant-strength magnetic Laplacian on the annulus, we complete Peetre’s work. In particular, the eigenspaces associated with its discrete spectrum true turns out to be polyanalytic spaces with respect to the invariant Cauchy–Riemann operator, and we write down explicit formulas for their reproducing kernels. When the magnetic field strength is an integer, we compute the limits of the obtained kernels when the outer radius of the annulus tends to infinity and express them by means of the fourth Jacobi theta function and of its logarithmic derivatives. Under the same quantization condition, we also derive their transformation rule under the action of the automorphism group of the annulus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.