Abstract

Enzyme electrodes based on complexing a water-soluble copolymer of acrylamide and vinylimidazole with [Os(dmebpy)2C1]+/2+ (dmebpy = 4,4'-dimethyl-2,2'-bipyridine) and cross-linking with oxidases by water-soluble cross-linkers are described. The potential of the polyacrylamide-based redox polymer is +55 mV (SCE), a typical electron diffusion coefficient (De) in the redox hydrogel that results from its cross-linking is (1.3 +/- 0.1) x 10(-9) cm2/s. The properties of the enzyme electrodes formed when this redox hydrogel "wired" horseradish peroxidase (HRP), lactate oxidase (LOx) or glucose oxidase (GOx) depended on the thickness of the hydrogel film, the chemistry of their cross-linking, and their enzyme content. At the wired HRP electrodes, H2O2 was electrocatalytically reduced to water at 0.0 V (SCE). Lactate and glucose were electrocatalytically oxidized at 0.16 V (SCE). The GOx electrodes, when made with 140 micrograms/cm2 thick polymer films, were selective for glucose in the presence of physiological concentrations of urate and ascorbate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.