Abstract

Poly tetrazole-containing thermally stable and insensitive alkali metal-based 3D energetic metal-organic frameworks (EMOFs) are promising high energy density materials to balance the sensitivity, stability, and detonation performance of explosives in defense, space, and civilian applications. Herein, the self-assembly of L3- ligand with alkali metals Na(I) and K(I) was prepared at ambient conditions, introducing two new EMOFs, [Na3(L)3(H2O)6]n (1) and [K3(L)3(H2O)3]n (2). Single crystal analysis reveals that Na-MOF (1) exhibited a 3D wave-like supramolecular structure with significant hydrogen bonding among the layers, while K-MOF (2) also featured a 3D framework. Both EMOFs were thoroughly characterized by NMR, IR, PXRD, and TGA/DSC analyses. Compounds 1 and 2 show excellent thermal decomposition Td = 344 and 337 °C, respectively, compared to the presently used benchmark explosives RDX (210 °C), HMX (279 °C), and HNS (318 °C), which is attributed to structural reinforcement induced by extensive coordination. They also show remarkable detonation performance (VOD = 8500 m s-1, 7320 m s-1, DP = 26.74 GPa, 20 GPa for 1 and 2, respectively) and insensitivity toward impact and friction (IS ≥ 40 J, FS ≥ 360 N for 1; IS ≥ 40 J, FS ≥ 360 N for 2). Their excellent synthetic feasibility and energetic performance suggest that they are the perfect blend for the replacement of present benchmark explosives such as HNS, RDX, and HMX.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.