Abstract
This study aimed to develop sheddable polyethylene glycol (PEG) shells with TAT-modified core cross-linked nanomicelles as drug-delivery carriers of doxorubicin (DOX) to establish a programmed response against the tumor microenvironment, enhanced endocytosis, and lysosomal pH-triggered DOX release. First, poly(L-succinimide) (PSI) underwent a ring-opening reaction with ethylenediamine to generate poly(N-(2-aminoethyl)-l-aspartamide) (P(ae-Asp)). Next, the thiolytic cleavable PEG, 3,4-dihydroxyphenylacetic acid, and TAT were grafted onto P(ae-Asp) to synthesize the amphiphilic graft copolymer of mPEG-SS-g-P(ae-Asp)-MCA-DA-TAT. In aqueous solution, the amphiphilic polymer self-assembled into nanomicelles, encapsulating DOX into the hydrophobic core of micelles. TAT was shielded by the PEG corona during circulation to avoid non-specific transmembrane interaction with normal cells, while the tumor redox environment-responsive shedding of PEG could expose TAT to promote internalization of tumor cells. In order to improve the stability of nanomicelles and achieve pH-triggered drug release, a core cross-linking strategy based on the coordination of catechol and Fe3+ was adopted. In vitro studies demonstrated that core cross-linked nanomicelles maintained the nanostructure in 100 times dilution in pH 7.4 phosphate-buffered saline (PBS). Moreover, DOX release from DOX-loaded core cross-linked nanomicelles (DOX-TAT-CCLMs) was favored at simulated lysosomal conditions over simulated plasma conditions, indicating that these nanomicelles demonstrate characteristics of pH-triggered DOX release. The TAT modification considerably enhanced the mean fluorescence intensity of the nanomicelles endocytosed by MCF-7/ADR cells by 8 times, compared with DOX·HCl after 8 h of incubation. Notably, the IC50 value of nanomicelles (11.61 ± 0.95 μg/mL) was nearly 4 times lower than that of DOX·HCl against MCF-7/ADR cells, implying that the nanomicelles could overcome drug resistance observed in MCF-7/ADR cells. Furthermore, the DOX-TAT-CCLMs reported superior tumor growth suppression in a 4T1 tumor-bearing mouse model. Thus, the redox- and pH- stimuli stepwise-responsive novel nanomicelles fabricated from the mPEG-SS-g-P(ae-Asp)-MCA-DA-TAT graft copolymer exhibited multifunctionality and displayed great potential for drug delivery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.