Abstract

In order to scale up culture therapeutic cells, such as mesenchymal stromal cells (MSCs), culture in suspension bioreactors using microcarriers (μCs) is preferred. However, the impact of microcarrier type on the resulting MSC secretory activity has not been investigated. In this study, two poly(ethylene glycol) hydrogel formulations with different swelling ratios (named "stiffer" and "softer") were fabricated as μC substrates to culture MSCs and MSCs genetically modified to express the interleukin-1 receptor antagonist (IL-1Ra-MSCs). Changes in cell number, secretory and angiogenic activity, and changes in MAPK signaling were evaluated when cultured on hydrogel μCs, as well as on tissue culture plastic-based Synthemax μCs. We demonstrated that culture on stiffer μCs increased secretion of IL-1Ra compared to culture on Synthemax μCs by IL-1Ra-MSCs by 1.2- to 1.6-fold, as well as their in vitro angiogenic activity, compared to culture on Synthemax μCs, while culture on both stiffer and softer μCs altered the secretion of several other factors compared to culture on Synthemax μCs. Changes in angiogenic activity corresponded with increased gene expression and secretion of hepatocyte growth factor by MSCs cultured on softer μCs by 2.5- to 6-fold compared to MSCs cultured on Synthemax μCs. Quantification of phosphoprotein signaling with the MAPK pathway revealed broad reduction of pathway activation by IL-1Ra-MSCs cultured on both stiffer and softer μCs compared to Synthemax, where phosphorylated c-Jun, ATF2, and MEK1 were reduced specifically on softer μCs. Overall, this study showed that μC surfaces can influence the secretory activity of genetically modified MSCs and identified associated changes in MAPK pathway signaling, which is a known central regulator of cytokine secretion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.