Abstract
The small heat shock proteins (sHSPs) are induced in all eukaryotes in response to high temperature stress, but are most abundant among members of the plant kingdom where they accumulate in multiple subcellular compartments. We have analyzed the expression of the chloroplast-localized sHSP from Arabidopsis thaliana, HSP21, and characterized the structure of the gene encoding this protein to facilitate future genetic studies on the function of HSP21 in the heat shock response. HSP21 is encoded in Arabidopsis by a single gene whose coding region is interrupted by a single intron. Previous studies have shown that intron processing is disrupted by severe, abrupt heat stress but is protected by pretreatments that induce thermotolerance. The processing of the HSP21 transcript was investigated in response to an abrupt heat stress regime and a gradual heat stress regime, the latter of which is known to confer thermotolerance in plants. Under abrupt stress conditions the HSP21 transcript is somewhat longer than under gradual heat stress conditions. However, the molecular basis for the size difference is not impaired intron splicing, but rather a difference in the length of the poly(A) tail depending on the heat stress regime. The results suggest that an increase in poly(A) tail length may be a generalized response to severe, abrupt heat stress and that poly(A) tail metabolism may be one of numerous cellular processes normally protected in thermotolerant cells from the otherwise damaging effects of high temperature stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.