Abstract
Based on stable isotope technology and a PMF model, the pollution characteristics and sources of carbon and nitrogen components in ambient PM2.5 in Huangshi City were explored. The results showed that the total carbon concentration[ρ(TC)] and the total carbon isotopic composition (δ13CTC) in ambient PM2.5 in Huangshi City both showed seasonal variation characteristics of being high in winter and low in summer, with values of (4.4±1.2) μg·m-3 and (-26.3±0.5)‰ in summer and (9.9±3.5) μg·m-3 and (-25.5±0.5)‰ in winter, respectively. The total nitrogen concentration[ρ(TN)]was significantly lower in summer[(9.1±9.1) μg·m-3]than that in winter[(62.4±26.4) μg·m-3], whereas the total nitrogen isotopic composition (δ15NTN) was obviously enriched in summer[(12.8±1.9)‰]compared with that in winter[(2.9±4.0)‰]. In addition to the contribution from local sources, the carbon and nitrogen components were mainly affected by the short-range regional emission in northern Hunan and the long-distance transport in the northwest. The MixSIAR model and the PMF model indicated that the vehicle emission source was the main source of carbon components in PM2.5, with contribution rates of 38.9% and 39.3%, respectively. MixSIAR results showed that NOx emission sources had a greater impact on nitrogen components in PM2.5 of different seasons than NH3 emission sources, and their contribution was higher in summer (80%) than that in winter (66.8%), among which the NOx emissions from coal combustion (summer:36.1%; winter:20.2%) had the largest contribution. By contrast, the PMF model indicated that the main source of nitrogen components was vehicle emissions (59.8%). Combining multiple models to overcome the uncertainty and subjectivity of single-model analysis can provide a theoretical basis for actively controlling and reducing fine particulate matter emissions and effectively dealing with urban aerosol pollution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.