Abstract
Air quality data from 33 environment sites and five regional sites from 2018 to 2020, as well as meteorological data, were used to research PM2.5 variation,spatial and temporal change, diurnal variation, and heavy pollutions in Beijing. The annual average mass concentrations of PM2.5 in Beijing were 51, 42, and 38 μg·m-3, which showed great progress in air quality improvement. However, the PM2.5 concentration in 2020 was still 8.6% above the national limit value despite a 30.9% decline since 2017. The PM2.5 south-north gradient in Beijing remained throughout the three years, but this pattern showed a less significant trend. The highest monthly mean PM2.5 concentrations in Beijing tended to occur in January-March, with the lowest in August-September. NOx, CO, and PM2.5 concentrations were significantly higher in the heating season than in the non-heating season by 58.4%, 52.9%, and 27.5%, respectively. Diurnal variation showed that greater PM2.5 concentrations were observed at nighttime during the heating season and, conversely, at noontime during the non-heating season. Sixteen pollution episodes occurred in Beijing over the last three years, resulting in 25 heavy pollution days distributed in autumn-winter of 2018-2020. The regional heavy pollution characteristics of PM2.5 in Beijing were significant. Through analysis, a continuous pollution reduction was still the most important reason for the yearly decrease in PM2.5. The concentrations of organic matter, elemental carbon, and crustal matter in the PM2.5 in Beijing decreased by 43.3%, 53.2%, and 51.5% since 2017, respectively, and nitrate, sulfate, and ammonium decreased by 34.2%, 52.2%, and 43.7%.The results showed that the control effect of PM2.5 in Beijing was obvious.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.